班级人数--热线:4008699035 手机:15921673576( 微信同号) |
增加互动环节,
保障培训效果,坚持小班授课,每个班级的人数限3到5人,超过限定人数,安排到下一期进行学习。 |
授课地点及时间 |
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【广州分部】:广粮大厦 【西安分部】:协同大厦 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦
开班时间(连续班/晚班/周末班):请点击此处咨询在线客服 |
课时 |
◆资深工程师授课
☆注重质量
☆边讲边练
☆若学员成绩达到合格及以上水平,将获得免费推荐工作的机会
★查看实验设备详情,请点击此处★ |
质量以及保障 |
☆
1、如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
☆ 2、在课程结束之后,授课老师会留给学员手机和E-mail,免费提供半年的课程技术支持,以便保证培训后的继续消化;
☆3、合格的学员可享受免费推荐就业机会。
☆4、合格学员免费颁发相关工程师等资格证书,提升您的职业资质。 |
☆课程大纲☆ |
|
- PASS(Power Analysis and Sample Size)是用于效能分析和样本量估计的统计软件包,是市场研究中非常好的效能检验的软件。它能对数十种统计学检验条件下的检验效能和样本含量进行估计,主要包括区间估计、均数比较、率的比较、相关与回归分析和病例随访资料分析等情形。该软件界面友好,功能齐全,操作简便。用户不需要精通统计学知识,只要确定医学研究设计方案,并提供相关信息,就可通过简单的菜单操作,估计出检验效能和样本含量。
- PASS特点
- 一个或两个均值检验
- PASS包含60多种用于样本量估计的工具和一个、两个、或同时两个不同均值的效能检验比对,包括t检验、等价性检验、非劣效性检验、交叉检验、无参数检验、仿真检验等等。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 多均值检验
- PASS包含几种用于样本量估计的工具和三个或更多不同均值的效能检验比对。包括ANOVA、混合模型、多重对比、多变量方差分析和重复测量等等。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 相关性检验
- PASS包含几种用于样本量估计的工具和相关性效能检验,包括单相关性和双相关性检验、单相关性的置信区间、组内相关性检验。PASS还可以计算样本量和效能,用于检验系数的透明度,检验两个评价指标间一致性的kappa值和线性一致性相关系数。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 正态性检验
- PASS包含对8种不同正态性检验方法的样本量计算和效能检验。使用过程很简单,并且都经过了准确性验证。
-
- 方差和标准差
- PASS包含了多种对方差和标准差的样本量计算和效能检验方法,包括单一方差和两个方差的检验、单方差的置信区间检验、两个方差比值的置信区间检验、标准差的置信区间检验。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 回归检验
- PASS包含了几种用于回归分析的样本量计算和效能检验方法,包括线性回归、线性回归斜率的置信区间、多重回归、多因素回归、泊松回归和逻辑回归。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 一比重检验
- PASS包含了20多种用于一比重的样本量计算和效能检验工具,包括z检验、等价性检验、非劣效性检验、置信区间检验和条件效能检验等等。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 二比重检验
- PASS包含了50多种用于二比重的样本量计算和效能检验工具,包括z检验、等价性检验、非劣效性检验、置信区间检验、相关比例检验、随机聚类检验和条件效能检验等等。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 卡方和其它比重检验
- PASS包含几种用于多比重的样本量计算和效能检验工具,包括卡方检验、 Cochran-Armitage、二序分类变量检验、灵敏性和特效性检验等等。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- 残存检验
- PASS包含了25种用于残存方法的样本量计算和效能检验工具,包括时序检验、非劣效性检验、组连续性检验、条件效能检验等等。每一个过程的使用都很简单,并且经过了精密的准确性验证。
-
- PASS 2019的系统要求
- 要运行PASS 2019,您的计算机至少必须符合以下标准:
- 处理器:
- 450 MHz或更快的处理器
- 32位(x86)或64位(x64)处理器
- 内存:
- 256MB(推荐512MB)
- 操作系统:
- Windows 10或更高版本
- Windows 8.1、8
- Windows 7的Windows Vista Service Pack 2或更高版本
- Windows Server 2016或更高版本
- Windows Server 2012 R2
- Windows Server 2012
- Windows Server 2008 SP2 / R2
- 特权:
- 仅在安装期间需要管理权限
- 硬盘空间:
- PASS 300 MB(如果尚未安装,则加上Microsoft .NET 4.6的空间)
-
-
-
- 英文介绍
- PASS software is an easy-to-use research tool for determining the number of subjects that should be used in a study. As the leader in sample size technology, PASS performs power analysis and calculates sample sizes for over 200 statistical tests and confidence intervals. With more sample size options than any other package, ASS is the best rsearch planning tool on the market.
- PASS Upgrade Information
- Updated and/or Improved Procedures in PASS 2019
- Conditional Power
- Conditional Power of Logrank Tests
- Conditional Power of Tests for the Difference Between Two Proportions
- Conditional Power of Tests for One Proportion
- Conditional Power of Tests for Two Means in a 2×2 Cross-Over Design
- Conditional Power of Paired T-Tests
- Conditional Power of Two-Sample T-Tests
- Conditional Power of One-Sample T-Tests
-
-
- Survival
- Tests for the Difference of Two Hazard Rates Assuming an Exponential Model
- Tests for Two Survival Curves Using Cox's Proportional Hazards Model
- -
- Non-Inferiority Logrank Tests
- Non-Inferiority Tests for Two Survival Curves Using Cox's Proportional Hazards Model
- Non-Inferiority Tests for the Difference of Two Hazard Rates Assuming an Exponential Model
- -
- Superiority by a Margin Tests for Two Survival Curves Using Cox's Proportional Hazards Model
- Superiority by a Margin Tests for the Difference of Two Hazard Rates Assuming an Exponential Model
- -
- Equivalence Tests for Two Survival Curves Using Cox's Proportional Hazards Model
- Equivalence Tests for the Difference of Two Hazard Rates Assuming an Exponential Model
-
- Proportions
- Non-Inferiority Tests for the Difference Between Two Proportions
- Non-Inferiority Tests for the Ratio of Two Proportions
- Non-Inferiority Tests for the Odds Ratio of Two Proportions
- -
- Non-Inferiority Tests for the Difference Between Two Correlated Proportions
- Non-Inferiority Tests for the Ratio of Two Correlated Proportiona
- -
- Non-Inferiority Tests for the Difference of Two Proportions in a Cluster-Randomized Design
- Non-Inferiority Tests for the Ratio of Two Proportions in a Cluster-Randomized Design
- -
- Equivalence Tests for the Difference Between Two Proportions
- Equivalence Tests for the Ratio of Two Proportions
- Equivalence Tests for the Odds Ratio of Two Proportions
- -
- Equivalence Tests for the Difference of Two Proportions in a Cluster-Randomized Design
- Equivalence Tests for the Ratio of Two Proportions in a Cluster-Randomized Design
- -
- Equivalence Tests for the Difference Between Two Correlated Proportions
- Equivalence Tets for the Ratio of Two Correlated Proportions
- -
- Non-Zero Null Tests for the Difference Between Two Proportions
- Non-Unity Null Tests for the Ratio of Two Proportions
- Non-Unity Null Tests for the Odds Ratio of Two Proportions
- -
- Non-Zero Null Tests for the Difference of Two Proportions in a Cluster-Randomized Design
- Non-Unity Null Tests for the Ratio of Two Proportions in a Cluster-Randomized Design
- -
- Tests for Two Proportions in a Stratified Design (Cochran-Mantel-Haenszel Tests)
- Tests for Two Proportions in a Cluster-Randomized Design
-
- Means
- One-Sample T-Tests for Superiority by a Margin
- One-Sample T-Tests for Non-Inferiority
- One-Sample T-Tests for Equivalence
- -
- Paired T-Tests for Equivalence
- -
- Two-Sample T-Tests Assuming Equal Variance
- Two-Sample T-Tests Allowing Unequal Variance
- Two-Sample T-Tests for Equivalence Assuming Equal Variance
- -
- Tests for the Ratio of Two Means
- Non-Inferiority Tests for the Ratio of Two Means
- Superiority by a Margin Tests for the Ratio of Two Means
- Equivalence Tests for the Ratio Two Means
- -
- Tests for the Difference Between Two Means in a 2×2 Cross-Over Design
- Tests for the Ratio of Two Means in a 2×2 Cross-Over Design
- Non-Inferiority Tests for the Difference Between Two Means in a 2×2 Cross-Over Design
- Non-Inferiority Tests for the Ratio of Two Means in a 2×2 Cross-Over Design
- Superiority by a Margin Tests for the Difference of Two Means in a 2×2 Cross-Over Design
- Superiority by a Margin Tests for the Ratio of Two Means in a 2×2 Cross-Over Design
- Equivalence Tests for the Difference Between Two Means in a 2×2 Cross-Over Design
- Equivalence Tests for the Ratio of Two Means in a 2×2 Cross-Over Design
- -
- Tests for Two Means in a Cluster-Randomized Design
- Non-Inferiority Tests for Two Means in a Cluster-Randomized Design
- Superiority by a Margin Tests for Two Means in a Cluster-Randomized Design
- Equivalence Tests for Two Means in a Cluster-Randomized Design
- -
- Hotelling's One-Sample T2
- Hotelling's Two-Sample T2
- -
- Multiple Testing for One Mean(One-Sample or Paired Data)
- Multiple Testing for Two Means
- Linear Regression Slope
- Confidence Intervals for Linear Regression Slope
- Conefficient Alpha
- Tests for One Coefficient Alpha
- Tests for Two Coeffcient Alphas
- Variances
- Tests for One Variance
- Compatibility of PASS 2019
- PASS 2019 is fully compatible with Windows 10, 8.1, 8, 7, and Vista SP2, on both 32-bit and 64-bit operating systems.
|