端海教育集团
全国免费热线:4008699035 微信号:shuhaipeixun
或15921673576(微 信 同 号) Q Q:849322415
首页 课程表 在线聊 报名 讲师 品牌 QQ聊 活动 就业
 
Neural computing – Data science培训

 
   班级规模及环境--热线:4008699035 手机:15921673576( 微信同号)
       坚持小班授课,为保证培训效果,增加互动环节,每期人数限3到5人。
   上课时间和地点
上课地点:【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【广州分部】:广粮大厦 【西安分部】:协同大厦 【石家庄分部】:河北科技大学/瑞景大厦
最近开课时间(周末班/连续班/晚班):2019年1月26日
   实验设备
     ☆资深工程师授课
        
        ☆注重质量 ☆边讲边练

        ☆合格学员免费推荐工作
        ★实验设备请点击这儿查看★
   质量保障

        1、培训过程中,如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
        2、课程完成后,授课老师留给学员手机和Email,保障培训效果,免费提供课后答疑。
        3、培训合格学员可享受免费推荐就业机会。

课程大纲
 

Overview of neural networks and deep learning
The concept of Machine Learning (ML)
Why we need neural networks and deep learning?
Selecting networks to different problems and data types
Learning and validating neural networks
Comparing logistic regression to neural network
Neural network
Biological inspirations to Neural network
Neural Networks– Neuron, Perceptron and MLP(Multilayer Perceptron model)
Learning MLP – backpropagation algorithm
Activation functions – linear, sigmoid, Tanh, Softmax
Loss functions appropriate to forecasting and classification
Parameters – learning rate, regularization, momentum
Building Neural Networks in Python
Evaluating performance of neural networks in Python
Basics of Deep Networks
What is deep learning?
Architecture of Deep Networks– Parameters, Layers, Activation Functions, Loss functions, Solvers
Restricted Boltzman Machines (RBMs)
Autoencoders
Deep Networks Architectures
Deep Belief Networks(DBN) – architecture, application
Autoencoders
Restricted Boltzmann Machines
Convolutional Neural Network
Recursive Neural Network
Recurrent Neural Network
Overview of libraries and interfaces available in Python
Caffee
Theano
Tensorflow
Keras
Mxnet
Choosing appropriate library to problem
Building deep networks in Python
Choosing appropriate architecture to given problem
Hybrid deep networks
Learning network – appropriate library, architecture definition
Tuning network – initialization, activation functions, loss functions, optimization method
Avoiding overfitting – detecting overfitting problems in deep networks, regularization
Evaluating deep networks
Case studies in Python
Image recognition – CNN
Detecting anomalies with Autoencoders
Forecasting time series with RNN
Dimensionality reduction with Autoencoder
Classification with RBM

 
  备案号:备案号:沪ICP备08026168号-1 .(2014年7月11)..............