IC培训
   
 
ANSYS | 大型通用有限元分析软件培训
 
   班级人数--热线:4008699035 手机:15921673576( 微信同号)
      增加互动环节, 保障培训效果,坚持小班授课,每个班级的人数限3到5人,超过限定人数,安排到下一期进行学习。
   授课地点及时间
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【广州分部】:广粮大厦 【西安分部】:协同大厦 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦
开班时间(连续班/晚班/周末班):2020年6月15日
   课时
     ◆资深工程师授课
        
        ☆注重质量 ☆边讲边练

        ☆若学员成绩达到合格及以上水平,将获得免费推荐工作的机会
        ★查看实验设备详情,请点击此处★
   质量以及保障

      ☆ 1、如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
      ☆ 2、在课程结束之后,授课老师会留给学员手机和E-mail,免费提供半年的课程技术支持,以便保证培训后的继续消化;
      ☆3、合格的学员可享受免费推荐就业机会。
      ☆4、实战授课。

课程大纲
 
  • MOVER是一个三相(水,石油和天然气)的有限元模型。目前,MOVER是同类模型中较先进的一种,MOVE可用于水、石油和天然气的流动模型,优化LNAPL复原和水在饱和/非饱和区域的NAPL陷阱
  •  
  • MOVER is an areal three-phase (water, oil and gas) finite-element model. Currently, the most advanced model of its kind, MOVER can be used to model flow of water, oil and gas, and optimize the recovery of LNAPL and water by minimizing NAPL entrapment in the saturated/unsaturated zones. A submodel of MOVER can be used to simulate coupled flow of water and LNAPL with a static atmospheric gas phase. MOVER simulates heterogeneous, anisotropic porous media or fractured media. It allows use of isoparametric elements to accurately represent material and physical/hydraulic boundaries. MOVER can be used to design NAPL recovery and hydraulic containment systems under complex hydrogeological conditions.
  • In a conventional free-phase recovery system (with static gas phase), oil is trapped in the unsaturated zone when the air-oil table falls and oil is trapped in the saturated zone if the oil-water table rises. In a poorly planned recovery system, 70 percent of the NAPL may be trapped due to fluid tables fluctuations within the cone of depression or in areas beyond the radius of influence if the free phase plume is not contained. Vacuum enhanced recovery increases gradients in water and oil potentials with minimal fluctuations in the fluid tables. Thus vacuum enhanced recovery or bioslurping helps to reduce volume of residual product and enhanced free product recovery, thus reducing cleanup costs.
  •  
  • MOVER KEY FEATURES
  • Initial conditions and free oil volume are estimated internally from the monitoring well fluid level data.
  • Rectangular or 2-D isoparametric quadrilateral elements to accurately model irregular material boundaries, hydraulic, and physical boundaries.
  • Vacuum enhanced recovery (bioslurping) of NAPL and water phases are simulated.
  • Oil and water recovery rates without vacuum are computed.
  • Areal distribution of residual hydrocarbon.
  • Interactive finite-element mesh generator, rectangular/isoparametric quadrilateral mesh.
  • Spatially-variable water recharge, injection or LNAPL leakage.
  • Model multiple pumping and/or injection wells.
  • Model specified head and flux conditions.
  • Simulates fractured media or granular porous media.
  • Bioslurping of NAPL and water phases are simulated.
  • MOVER INPUT
  • Mesh discretization data
  • Initial conditions: water and oil pressure distribution
  • Boundary conditions for flow: specified head boundaries and flux boundaries
  • Source/sink boundary: Soil hydraulic properties include van Genuchten parameters, hydraulic conductivity distribution, and porosity
  • MOVER USER INTERFACE
  • Graphical user interface in Windows 3.x, Windows 95 and Windows NT includes a mesh generator/graphical editor which allows DXF site map import, highly irregular geometry and comes with a 16-bit and 32-bit version.
  • MOVER OUTPUT
  • Spatial distribution of fluid pressure with time
  • Spatial distribution of fluid saturation with time
  • Fluid velocity distribution with time
  • Fluid pumping/injection rates and volume vs. time
  • Output from MOVER can be used seamlessly to simulate multicomponent aqueous phase transport using BIOF&T 2-D/3-D
  • MOVER TECHNICAL INFORMATION
  • MOVER (Multiphase Areal Organic Vacuum Enhanced Recovery Simulator) can be used to model recovery and migration of light nonaqueous phase liquids with vacuum enhanced recovery in unconfined heterogeneous, anisotropic aquifers. BIOF&T can be used in conjunction with MOVER to simulate multispecies dissolved phase transport in heterogeneous, anisotropic, fractured media, or unfractured granular porous media.
  • Groundwater contamination from hydrocarbon spills/leaks is a serious environmental problem. Nonaqueous phase liquids (NAPL) are immiscible fluids that have insignificant solubility in water. NAPLs in subsurface migrate under the influence of capillary, gravity, and buoyancy forces as a separate phase. Light NAPLs (LNAPLs) float and migrate on top of the water table posing a continuous source of contamination to the groundwater. Due to water table fluctuations, some of the NAPL gets trapped in the unsaturated and saturated zones. NAPL trapped in the soil and groundwater acts as a continuing source of groundwater contamination resulting in expensive restoration of these aquifers. MOVER optimizes recovery of LNAPL by vacuum enhanced recovery by increasing gradient in the oil potentials with minimum fluctuations in the fluid tables.
  • MOVER consists of:
  • MOVER flow module simulates vacuum enhanced recovery and migration of water and LNAPL in unconfined aquifers following an LNAPL spill or leakage at a facility. It can also simulate NAPL recovery with skimmers and trenches with static gas phase. MOVER can be used to optimize the number, location, and recovery rates for water, oil, and soil vapor extraction wells.
  • MOVER writes input files for BIOF&T, a transport model that simulates decoupled 2-D or 3-D multispecies aqueous phase transport from the free and residual NAPLs.
  • The MOVER flow module invokes an assumption of near-equilibrium conditions in the vertical direction. This reduces the nonlinearity in the constitutive model and transforms a 3-D problem into a 2-D areal problem, thereby drastically reducing computational time for the simulation.
  • MOVER gives the initial distribution of NAPL specific volume in the domain for BIOF&T which models the aqueous phase transport, computes and updates the temporal and spatial variation in the source during the simulation.
  • This software is accompanied by a user-friendly pre-processor, Mesh Editor and post-processor. The pre-processor and Mesh Editor can be used to create input data files for MOVER. The pre-processor and Mesh Editor include modules for: mesh generation; allocating heterogeneous and anisotropic soil properties; defining fixed head, flux, source/sink boundary conditions for water, oil, and gas phases; and allocating spatially-variable recharge in the domain. Two-dimensional rectangular or isoparametric quadrilateral elements are permissible to accurately model irregular domain and material boundaries.
  • Required input for flow analyses consists of initial air-oil table, air-water table distribution, soil hydraulic properties, fluid properties, time integration parameters, boundary conditions and mesh parameters. The van Genuchten constitutive model, along with fluid scaling parameters, is used to compute water and oil phase volumes.
  • MOVER output includes a list of the input parameters, initial and boundary conditions, and the mesh connectivity. It also includes simulated water, oil, and gas phase pressures, water, oil, and gas phase velocities at each node, total volume of water and oil versus time, and water and oil recovery/injection rates for each sink/source location versus time. Volume of free oil, and residual oil, and their spatial distributions are also printed versus time. Flow simulations can be performed in stages. MOVER creates an auxiliary file at the end of the current stage that can be used to define initial conditions for the next stage.
  • MOVER INPUT PARAMETERS
  • Estimation of Soil Properties
  • Soil properties needed for a MOVER flow simulation are: saturated hydraulic conductivity in principal flow directions, anisotropy angle of the main principal flow direction in the areal plane with the x-direction of the model domain, soil porosity , irreducible water saturation, and van Genuchten retention parameters. SOILPARA 1995, a proprietary computer model, provides an easy-to-use tool for estimating soil hydraulic parameters from soil texture based on: 1) the public domain model RETC developed by M. Th. van Genuchten et al., 1991, 2) the work of Shirazi and Boersma, 1984 and Campbell, 1985, and 3) a selection of USDA-recommended typical parameter values for various texture classes available in the SOILPARA database are included in the MOVER document.
  • Fluid Properties
  • Fluid properties required by MOVER are specific gravity, oil to water dynamic viscosity ratio, and fluid scaling parameters. Methods to estimate these parameters are included in the MOVER document.
  • Creating Input Data Files
  • The sequence of the input parameters and their definitions have been furnished in Appendix D of the document. This section explains the procedure for spatial discretization and mesh generation, defining initial conditions, boundary conditions, and the maximum permissible array dimensions.
  • Spatial Discretization and Mesh Generation
  • The MOVER modules allow use of rectangular and isoparametric elements. The element size and shape can be changed to obtain mesh refinement that are necessary to obtain accurate results.
  • Initial Conditions for Flow
  • Initial head distribution in the domain for water and oil can be specified by:
  • 1) A bilinear interpolation with heads defined on the left and right boundaries
  • 2) A non-uniform head distribution defined by fluid levels in the monitoring wells
  • Boundary Conditions
  • Specified pressure head (type-1) boundary conditions can be defined at selected nodes versus time.
  • Type-2 (specified flux) and source/sink boundary conditions can be defined by specifying the volumetric rate [L3 T -1] versus time for respective nodes. For a type-2 boundary condition, when flux [L T -1] is known at a node, the user should multiply flux with the area represented by the node in a plane perpendicular to the flux.
  • MOVER WINDOWS INTERFACE
  • What is the MOVER pre-processor?
  • The Windows pre-processor for MOVER is designed to help users create and edit input files for the MOVER numerical model. The pre-processor works in concert with the Mesh Editor to allow users to assign boundary condition schedules, soil types, recharge zones, etc., to the finite element mesh used in the MOVER numerical model. The pre-processor contains all control parameters that determine model run options, initial conditions, monitoring well information, fluid properties, boundary schedule data and soil type definitions as well as serving as a binder for Mesh Editor files. The pre-processor also contains a module for writing input files for the MOVER numerical model and for actually running the numerical model.
  • Using the MOVER pre-processor
  • The MOVER pre-processor runs under Windows 3.X, Windows 95 and Windows NT. The pre-processor uses the familiar tabbed notebook interface to allow quick editing of input files. The main program has two sets of tabs, one along the bottom which separates major sections of the interface, and, on some of the large notebook pages, tabs along the top that separate subsections to make the most use of available screen space. For example, clicking on the bottom tab "Boundary Schedules" takes the user to the boundary schedule notebook. Here there is a tabbed notebook for editing type 1 and type 2 boundary condition schedules.
  • The Tools selection on the main menu opens a tabbed notebook which includes Cue Cards, Files used in the pre-processor, a numerical model Runner, and a place to determine the location of the Mesh Editor. The files listed in the pre-processor are used to store variables and retrieve data and are generated automatically by the pre-processor and the Mesh Editor.
  • MOVER data files
  • All the MOVER variables for the numerical file are stored in ASCII text files that resemble Windows .ini files. These files are read and written by the MOVER pre-processor and Mesh Editor. They can be interchanged in the pre-processor setup window. For example, a material property file used in an earlier project can be assigned to a new project and all those soils will be available in the new project. A mesh file and all its associated files can be imported in the same manner. The data files can be edited with any ASCII text editor although this is not necessary. This open architecture was designed for future expansions of all DAEM models, or for third-party development of graphical interface tools.
  • What is the Mesh Editor?
  • The Mesh Editor was designed to work with these numerical models to create and edit finite element meshes. The Mesh Editor allows designing irregular quadrilateral meshes in two and three dimensions. Working with a numerical model pre-processor, the Mesh Editor provides a graphical interface for assigning properties to a mesh such as initial concentrations of contaminants, soil properties, boundary conditions, etc.
  • Speed Buttons
  • Pan
  • Panning allows the mesh to be moved in the Mesh Editor window. This puts the Mesh Editor into its "pan" state. You can then hold down the left mouse button and move the mesh on the screen. Letting go of the left mouse button "drops" the mesh in place. Nodes cannot be selected individually in this state.
  • Rotate
  • The rotate button is the leftmost red button on the tool bar. It puts the Mesh Editor into a "rotate" state where the mouse can be used to rotate the mesh in three dimensions. The mouse will rotate the mesh on the XYZ axis intersection. Rotating the Mesh Editor takes a little getting used to but if you ever get lost, the handy X-Y, Y-Z, and Z-X buttons will snap the mesh back into place.
  • Editing
  • The rightmost red button called Node Control puts the Mesh Editor in its "editing" state. Now a node or group of nodes can be selected to have values assigned to them, or to be moved in the X, Y and/or Z direction. To edit associations (i.e., soil type, recharge zones, type-1 boundary conditions, etc.) for a node, select the node, then right click the mouse. This will bring up a list of available associations. Clicking on an association will bring up a secondary list of associations that can be assigned to the node.
  • Moving Nodes
  • Nodes can be moved by holding down the Ctrl key (control) and the left mouse button, then moving the cursor on the screen. Nodes move according to the dimension displayed on the screen, so that two dimensional meshes should be in the default X-Y view for node movement. Nodes can only be moved when the Mesh Editor is in its "editing" state.
  • DXF Import
  • Version 1.1 of the DAEM Mesh Editor introduced DXF import. This tool allows for .dxf files to be placed on a mesh. This way, site files in CAD programs can be exported to the Mesh Editor, then used to aid mesh refinement and adjustment.
  • Post-processor
  • The post-processor is a data parsing tool, graphing package and contour export tool for these numerical models. The post-processor is designed to be a user-friendly tool for quickly discerning model results. Users of these models can also review model text output files for a more detailed view of model results.
  • MOVER VERIFICATION
  • Example: NAPL leak in an unconfined aquifer
  • This example is to test the accuracy of MOVER to simulate an LNAPL leak into an unconfined aquifer. The domain is 40 m x 40 m, discretized with uniformly spaced 21 rows and 21 columns (x = 2 m, y = 2 m). A leak occurred at the center of the domain (x = 20 m, y = 20 m) at a rate of 1 m 3/day for 20 days. Simulation was performed with an initial time step of 0.001 days, and the time incremental factor and maximum time step size were 1.03 and 0.2 days, respectively. The initial uniform piezometric head (Pao = Paw ) was 100 m throughout the domain. All boundaries were no-flow boundaries for water and oil phase. The water head at the out boundary was fixed at 100m throughout the simulation.
  • The simulated specific oil volume distribution is shown in the following figure along with the corresponding results from MOFAT. There are some differences in these solutions due to the difference in the formulations of the MOVER and MOFAT models. MOVER is a vertically-integrated areal model while MOFAT is a 2-D vertical slice (Planar or radially-symmetric vertical section) model. Nevertheless, it can be seen in the following figure that both solutions agree reasonably well over the range of the simulation.
端海教育实验设备
android开发板
linux_android开发板
fpga图像处理
端海培训实验设备
fpga培训班
 
本课程部分实验室实景
端海实验室
实验室
端海培训优势
 
  合作伙伴与授权机构



Altera全球合作培训机构



诺基亚Symbian公司授权培训中心


Atmel公司全球战略合作伙伴


微软全球嵌入式培训合作伙伴


英国ARM公司授权培训中心


ARM工具关键合作单位
  我们培训过的企业客户评价:
    端海的andriod 系统与应用培训完全符合了我公司的要求,达到了我公司培训的目的。 特别值得一提的是授课讲师针对我们公司的开发的项目专门提供了一些很好程序的源代码, 基本满足了我们的项目要求。
——上海贝尔,李工
    端海培训DSP2000的老师,上课思路清晰,口齿清楚,由浅入深,重点突出,培训效果是不错的,
达到了我们想要的效果,希望继续合作下去。
——中国电子科技集团技术部主任 马工
    端海的FPGA 培训很好地填补了高校FPGA培训空白,不错。总之,有利于学生的发展, 有利于教师的发展,有利于课程的发展,有利于社会的发展。
——上海电子学院,冯老师
    端海给我们公司提供的Dsp6000培训,符合我们项目的开发要求,解决了很多困惑我 们很久的问题,与端海的合作非常愉快。
——公安部第三研究所,项目部负责人李先生
    MTK培训-我在网上找了很久,就是找不到。在端海居然有MTK驱动的培训,老师经验 很丰富,知识面很广。下一个还想培训IPHONE苹果手机。跟他们合作很愉快,老师很有人情味,态度很和蔼。
——台湾双扬科技,研发处经理,杨先生
    端海对我们公司的iPhone培训,实验项目很多,确实学到了东西。受益无穷 啊!特别是对于那种正在开发项目的,确实是物超所值。
——台湾欧泽科技,张工
    通过参加Symbian培训,再做Symbian相关的项目感觉更加得心应手了,理 论加实践的授课方式,很有针对性,非常的适合我们。学完之后,很轻松的就完成了我们的项目。
——IBM公司,沈经理
    有端海这样的DSP开发培训单位,是教育行业的财富,听了他们的课,茅塞顿开。
——上海医疗器械高等学校,罗老师
  我们最新培训过的企业客户以及培训的主要内容:
 

一汽海马汽车 DSP培训
苏州金属研究院 DSP培训
南京南瑞集团技术 FPGA培训
西安爱生技术集团 FPGA培训,DSP培训
成都熊谷加世电气 DSP培训
福斯赛诺分析仪器(苏州) FPGA培训
南京国电工程 FPGA培训
北京环境特性研究所 达芬奇培训
中国科学院微系统与信息技术研究所 FPGA高级培训
重庆网视只能流技术开发 达芬奇培训
无锡力芯微电子股份 IC电磁兼容
河北科学院研究所 FPGA培训
上海微小卫星工程中心 DSP培训
广州航天航空 POWERPC培训
桂林航天工学院 DSP培训
江苏五维电子科技 达芬奇培训
无锡步进电机自动控制技术 DSP培训
江门市安利电源工程 DSP培训
长江力伟股份 CADENCE 培训
爱普生科技(无锡 ) 数字模拟电路
河南平高 电气 DSP培训
中国航天员科研训练中心 A/D仿真
常州易控汽车电子 WINDOWS驱动培训
南通大学 DSP培训
上海集成电路研发中心 达芬奇培训
北京瑞志合众科技 WINDOWS驱动培训
江苏金智科技股份 FPGA高级培训
中国重工第710研究所 FPGA高级培训
芜湖伯特利汽车安全系统 DSP培训
厦门中智能软件技术 Android培训
上海科慢车辆部件系统EMC培训
中国电子科技集团第五十研究所,软件无线电培训
苏州浩克系统科技 FPGA培训
上海申达自动防范系统 FPGA培训
四川长虹佳华信息 MTK培训
公安部第三研究所--FPGA初中高技术开发培训以及DSP达芬奇芯片视频、图像处理技术培训
上海电子信息职业技术学院--FPGA高级开发技术培训
上海点逸网络科技有限公司--3G手机ANDROID应用和系统开发技术培训
格科微电子有限公司--MTK应用(MMI)和驱动开发技术培训
南昌航空大学--fpga 高级开发技术培训
IBM 公司--3G手机ANDROID系统和应用技术开发培训
上海贝尔--3G手机ANDROID系统和应用技术开发培训
中国双飞--Vxworks 应用和BSP开发技术培训

 

上海水务建设工程有限公司--Alter/Xilinx FPGA应用开发技术培训
恩法半导体科技--Allegro Candence PCB 仿真和信号完整性技术培训
中国计量学院--3G手机ANDROID应用和系统开发技术培训
冠捷科技--FPGA芯片设计技术培训
芬尼克兹节能设备--FPGA高级技术开发培训
川奇光电--3G手机ANDROID系统和应用技术开发培训
东华大学--Dsp6000系统开发技术培训
上海理工大学--FPGA高级开发技术培训
同济大学--Dsp6000图像/视频处理技术培训
上海医疗器械高等专科学校--Dsp6000图像/视频处理技术培训
中航工业无线电电子研究所--Vxworks 应用和BSP开发技术培训
北京交通大学--Powerpc开发技术培训
浙江理工大学--Dsp6000图像/视频处理技术培训
台湾双阳科技股份有限公司--MTK应用(MMI)和驱动开发技术培训
滚石移动--MTK应用(MMI)和驱动开发技术培训
冠捷半导体--Linux系统开发技术培训
奥波--CortexM3+uC/OS开发技术培训
迅时通信--WinCE应用与驱动开发技术培训
海鹰医疗电子系统--DSP6000图像处理技术培训
博耀科技--Linux系统开发技术培训
华路时代信息技术--VxWorks BSP开发技术培训
台湾欧泽科技--iPhone开发技术培训
宝康电子--Allegro Candence PCB 仿真和信号完整性技术培训
上海天能电子有限公司--Allegro Candence PCB 仿真和信号完整性技术培训
上海亨通光电科技有限公司--andriod应用和系统移植技术培训
上海智搜文化传播有限公司--Symbian开发培训
先先信息科技有限公司--brew 手机开发技术培训
鼎捷集团--MTK应用(MMI)和驱动开发技术培训
傲然科技--MTK应用(MMI)和驱动开发技术培训
中软国际--Linux系统开发技术培训
龙旗控股集团--MTK应用(MMI)和驱动开发技术培训
研祥智能股份有限公司--MTK应用(MMI)和驱动开发技术培训
罗氏诊断--Linux应用开发技术培训
西东控制集团--DSP2000应用技术及DSP2000在光伏并网发电中的应用与开发
科大讯飞--MTK应用(MMI)和驱动开发技术培训
东北农业大学--IPHONE 苹果应用开发技术培训
中国电子科技集团--Dsp2000系统和应用开发技术培训
中国船舶重工集团--Dsp2000系统开发技术培训
晶方半导体--FPGA初中高技术培训
肯特智能仪器有限公司--FPGA初中高技术培训
哈尔滨大学--IPHONE 苹果应用开发技术培训
昆明电器科学研究所--Dsp2000系统开发技术
奇瑞汽车股份--单片机应用开发技术培训


 
 
  端海企业学院  
  备案号:备案号:沪ICP备08026168号-1 .(2014年7月11)...................
友情链接:Cadence培训 ICEPAK培训 PCB设计培训 adams培训 fluent培训系列课程 培训机构课程短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班培训 南京 NS3培训 OpenGL培训 FPGA培训 PCIE培训 MTK培训 Cortex训 Arduino培训 单片机培训 EMC培训 信号完整性培训 电源设计培训 电机控制培训 LabVIEW培训 OPENCV培训 集成电路培训 UVM验证培训 VxWorks培训 CST培训 PLC培训 Python培训 ANSYS培训 VB语言培训 HFSS培训 SAS培训 Ansys培训 短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班 端海 教育 企业 学院 培训课程 系列班 长期课程列表实践课程高级课程学校培训机构周末班 短期培训系列课程培训机构 端海教育企业学院培训课程 系列班 软件无线电培训 FPGA电机控制培训 Xilinx培训 Simulink培训 DSP培训班 数字信号培训 Ansys培训 LUA培训 单片机培训班 PCB设计课程 PCB培训 电源培训 电路培训 CST培训 PLC课程 变频器课程 Windows培训 R语言培训 Python培训 5G培训
在线客服