通过SAS编程进行预测 (FETSP)培训
Forecasting Using SAS Software: A Programming Approach
This course teaches analysts how to use SAS/ETS software to diagnose systematic variation in data collected over time, create forecast models to capture the systematic variation, evaluate a given forecast model for goodness-of-fit and accuracy, and forecast future values using the model. Topics include Box-Jenkins ARIMA models, dynamic regression models, and exponential smoothing models.
预测简介
时间序列和预测
SAS预测软件介绍
评估拟合优度和准确性
平稳时间序列预测模型
平稳时间序列简介
自回归模型
PACF和IACF详细技术说明(自学)
移动平均模型
未观察到移动平均模型组件的估计(自学)
混合自回归移动平均模型
确定适当的自回归移动平均模型
估计和预测方法
Box-Jenkins模型的替代模型
非平稳时间序列的预测模型
趋势和季节性的统计检验
趋势模型
季节模型
Box-Jenkins模型的替代模型
预测航空公司乘客时间序列
探索性变量的预测模型
一般回归模型
事件模型
时间序列回归模型
预测的数据准备
处理日期
处理时间标识的数据
读取和修改时间序列数据
处理唯一、特定日期或频数
注意事项:
必备条件:
参加本课程前,你应该有使用SAS输入或者转换数据和执行基本分析的经验,例如计算行列总数和平均值、生成图表。你可以通过完成《SAS Programming 1: Essentials》(《SAS编程 1: 基础》)和《SAS Programming 2: Data Manipulation Techniques》(《SAS编程2:数据处理技术》)获得这些经验。SAS宏语言编程的知识对学习本课程有帮助,但不是必需。没有数据分析和统计建模经验的学生可以通过《Statistics 2: ANOVA and Regression》(《统计2:方差分析和回归》)课程获得这些预备知识。